

## Lecture 6 Outline

6.1 The Role of Water as a Solvent
6.2 Precipitation Reactions
6.3 Acid-Base Reactions

Electron distribution in molecules of $\mathrm{H}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$


The electrical conductivity of ionic solutions


## The dissolution of an ionic compound



A substance that conducts a current when dissolved in water is an electrolyte. lonic compounds are strong electrolytes

Sample Problem:

## Determining Moles of lons in Aqueous lonic Solutions

PROBLEM: How many moles of each ion are in the following solutions?
(a) 5.0 mol of ammonium sulfate dissolved in water
(b) 78.5 g of cesium bromide dissolved in water
(c) $7.42 \times 10^{22}$ formula units of copper(II) nitrate dissolved in water
(d) 35 mL of 0.84 M zinc chloride

$$
\mathrm{n}=\mathrm{m} / \mathrm{M} \quad \mathrm{c}=\mathrm{n} / \mathrm{V}
$$

SOLUTION: (a) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(s) \longrightarrow 2 \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q)$
$5.0 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ $\qquad$ 10. $\mathrm{mol} \mathrm{NH}_{4}{ }^{+}$ $5.0 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}$


## Precipitation Reactions

Precipitate - insoluble solid that separates from solution

molecular equation

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NaI}(\mathrm{aq}) \longrightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{NaNO}_{3}(\mathrm{aq})
$$ precipitate

$\begin{aligned} & \text { ionic } \\ & \text { quation }\end{aligned} \mathrm{Pb}^{2+}+2 \mathrm{NO}_{3}^{-}+2 \mathrm{Na}^{+}+2 \mathrm{l} \longrightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{Na}^{+}+2 \mathrm{NO}_{3}^{-}$
net
ionic equation

$$
\mathrm{Pb}^{2+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{PbI}_{2}(\mathrm{~s})
$$

$$
\mathrm{Na}^{+} \text {and } \mathrm{NO}_{3}^{-} \text {are }
$$

spectator ions

## Sample Problem Determining the Molarity of $\mathrm{H}^{+}$lons in Aqueous Solutions of Acids

PROBLEM: Nitric acid is a major chemical in the fertilizer and explosives industries. In aqueous solution, each molecule dissociates and the H becomes a solvated $\mathrm{H}^{+}$ion. What is the molarity of $\mathrm{H}^{+}(a q)$ in 1.4 M nitric acid?

PLAN: Use the formula to find the molarity of $\mathrm{H}^{+}$.

SOLUTION: Nitrate is $\mathrm{NO}_{3}{ }^{-}$.

$$
\mathrm{HNO}_{3}(l) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)
$$

$1.4 \mathrm{M} \mathrm{HNO}_{3}(a q)$ should have $1.4 \mathrm{M} \mathrm{H}^{+}(a q)$.

Solubility Rules For Ionic Compounds in Water
Soluble Ionic Compounds

1. All common compounds of group $1 \mathrm{~A}(1)$ ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}\right.$, etc.) and ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$are soluble.
2. All common nitrates $\left(\mathrm{NO}_{3}^{-}\right)$, acetates $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$and most perchlorates $\left(\mathrm{ClO}_{4}^{-}\right)$are soluble.
3. All common chlorides $\left(\mathrm{Cl}^{-}\right)$, bromides $(\mathrm{Br})$ and iodides $\left(\mathrm{l}^{-}\right)$are soluble, except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Cu}^{+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.

## Insoluble Ionic Compounds

1. All common metal hydroxides are insoluble, except those of group 1A(1) and the larger members of group 2A(2)(beginning with $\mathrm{Ca}^{2+}$ ).
2. All common carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and phosphates $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ are insoluble, except those of group $1 \mathrm{~A}(1)$ and $\mathrm{NH}_{4}{ }^{+}$.
3. All common sulfides are insoluble except those of group 1A(1), group $2 \mathrm{~A}(2)$ and $\mathrm{NH}_{4}{ }^{+}$.

Solubility Rules for Common Ionic Compounds In water at $25^{\circ} \mathrm{C}$

| Soluble Compounds | Exceptions |
| :--- | :--- |
| Compounds containing alkali <br> metal ions and $\mathrm{NH}_{4}^{+}$ |  |
| $\mathrm{NO}_{3}{ }^{3}, \mathrm{HCO}_{3}{ }^{3}, \mathrm{ClO}_{3}{ }^{-}$ | Halides of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$ <br> $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ |
| Sulfates of $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$, <br> $\mathrm{Hg}{ }^{2+}, \mathrm{Pb}^{2+}$ |  |
| $\mathrm{SO}_{4}{ }^{2-}$ | Exceptions |
| $\mathrm{Insoluble} \mathrm{Compounds}^{\text {Compounds containing alkali }}$metal ions and $\mathrm{NH}_{4}^{+}$ <br> Compounds containing alkali <br> metal ions and $\mathrm{Ba}^{2+}$ |  |
| $\mathrm{CO}_{3}{ }^{2-}, \mathrm{PO}_{4}^{3-}, \mathrm{CrO}_{4}{ }^{2-}, \mathrm{S}^{2-}$ |  |
| $\mathrm{OH}^{-}$ |  |



Formation of Silver Chloride

```
M2H
CFIGPICAL BEHAVIOR OF MAIN-GROUP
                ELEMENTS
```


## Formation of

 Silver CblorideFormation of Silver Chloride, Silver Bromide, Silver lodide

white $\longrightarrow$ Dissolves again in diluted $\mathrm{NH}_{3}$
$\mathrm{Ag}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{NaBr} \longrightarrow \mathrm{AgBr} \downarrow+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}^{-}{ }_{(\text {(aq) }}$
slightly yellow
Dissolves again in concentrated $\mathrm{NH}_{3}$
$\mathrm{Ag}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{NaI} \longrightarrow \mathrm{AgI} \not \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}{ }^{-}{ }_{(\text {aq })}$
yellow
Does not dissolve in $\mathrm{NH}_{3}$

## Writing Net lonic Equations

1. Write the balanced molecular equation.
2. Write the ionic equation showing the strong electrolytes
3. Determine precipitate from solubility rules
4. Cancel the spectator ions on both sides of the ionic equation


Write the net ionic equation for the reaction of silver nitrate with sodium chloride.
$\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$

$$
\begin{gathered}
\mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{Na}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{Na}^{+}+\mathrm{NO}_{3}^{-} \\
\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}(\mathrm{~s}) \\
\hline
\end{gathered}
$$

PROBLEM: Predict whether a reaction occurs when each of the following pairs of solutions are mixed. If a reaction does occur, write balanced molecular, total ionic, and net ionic equations, and identify the spectator ions.
(a) sodium sulfate $(a q)+$ strontium nitrate $(a q)$ $\qquad$
(b) ammonium perchlorate $(a q)+$ sodium bromide $(a q) \longrightarrow$

## SOLUTION:

(a) $\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}(a q) \longrightarrow 2 \mathrm{NaNO}_{3}(a q)+\mathrm{SrSO}_{4}(s)$

$$
\begin{aligned}
& 2 \mathrm{Na}^{+}(a q)+ \mathrm{SO}_{4}{ }^{2-}(a q)+ \\
& \mathrm{Sr}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q) \longrightarrow \\
& 2 \mathrm{Na}^{+}(a q)+2 \mathrm{NO}_{3}{ }^{-}(a q)+\mathrm{SrSO}_{4}(s)
\end{aligned}
$$

$$
\mathrm{SO}_{4}{ }^{2-}(a q)+\mathrm{Sr}^{2+}(a q) \longrightarrow \mathrm{SrSO}_{4}(\mathrm{~s})
$$

(b) $\mathrm{NH}_{4} \mathrm{ClO}_{4}(a q)+\mathrm{NaBr}(a q) \longrightarrow \mathrm{NH}_{4} \mathrm{Br}(a q)+\mathrm{NaClO}_{4}(a q)$

All reactants and products are soluble so no reaction occurs.

## Reactions in Water

Hydration: Formation of ions that are surrounded by water
Dissociation I: Dissociation of ionic compounds (hydration energy)

$$
\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Na}^{+}{ }_{(\mathrm{aq.})}+\mathrm{Cl}_{(\mathrm{aq.})}
$$

Dissociation II: Heteropolar dissociation caused by the reaction with water (protolysis).



Hydronium Ion

Electrolytes: Substances that show electrical conductivity after dicossiation

## Acid and Base Reactions



## Arrhenius (1883)

Arrhenius acid is a substance that produces $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in water


Arrhenius base is a substance that produces $\mathrm{OH}^{-}$in water


## Neutralization Reaction

$$
\begin{aligned}
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) & \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} & \longrightarrow \mathrm{Na}^{+}+\mathrm{CF}^{-}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}^{+}+\mathrm{OH}^{-} & \longrightarrow \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

## Monoprotic acids ( $\mathrm{H}_{2} \mathrm{O}$ neglected for clarity)

$\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \quad$ Strong electrolyte, strong acid
$\mathrm{HNO}_{3} \longrightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \quad$ Strong electrolyte, strong acid
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \quad$ Weak electrolyte, weak acid

Diprotic acids
( $\mathrm{H}_{2} \mathrm{O}$ neglected for clarity)
$\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$
Strong electrolyte, strong acid
$\mathrm{HSO}_{4}{ }^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \quad$ Weak electrolyte, weak acid

## Triprotic acids

( $\mathrm{H}_{2} \mathrm{O}$ neglected for clarity)
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftarrows \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
Weak electrolyte, weak acid
$\mathrm{H}_{2} \mathrm{PO}_{4} \rightleftarrows \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{2-}$
Weak electrolyte, weak acid
$\mathrm{HPO}_{4}{ }^{2} \rightleftarrows \mathrm{H}^{+}+\mathrm{PO}_{4}{ }^{3-}$
Weak electrolyte, weak acid

## Selected Acids and Bases

## Acids

## Strong

hydrochloric acid, HCl hydrobromic acid, HBr hydroiodic acid, HI nitric acid, $\mathrm{HNO}_{3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$ perchloric acid, $\mathrm{HClO}_{4}$

## Weak

hydrofluoric acid, HF phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$
acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ (or $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ )

## Bases

## Strong

sodium hydroxide, NaOH potassium hydroxide, KOH calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$ strontium hydroxide, $\mathrm{Sr}(\mathrm{OH})_{2}$ barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$

## Weak

ammonia, $\mathrm{NH}_{3}$

## pH -value

$$
\mathrm{pH}=-\log \mathrm{c}_{\mathrm{H}^{+}} \quad \mathrm{pOH}=-\log \mathrm{c}_{\mathrm{OH}^{-}} \quad \mathrm{pH}+\mathrm{pOH}=14
$$



## Strength of an acid

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \\
\hline K_{S}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered} \Longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

## Strength of a base


pks value:

| HCl | $-7,0$ |  | $\mathrm{H}_{2} \mathrm{~S}$ |
| :--- | :--- | :--- | :--- |
|  |  | $+6,99$ |  |
| $\mathrm{H}_{2} \mathrm{SO}_{4}$ | $-3,0$ | $\mathrm{HSO}_{3}{ }^{-}$ | $+7,20$ |
| $\mathrm{HNO}_{3}$ | $-1,37$ |  | HCN |
| $\mathrm{H}_{3} \mathrm{PO}_{4}$ | $+2,16$ |  | $+9,21$ |
| $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ | $+4,75$ |  | $\mathrm{H}_{2} \mathrm{O}_{2}$ |

## Sample Problem

Writing lonic Equations for Acid-Base Reactions

PROBLEM: Write balanced molecular, total ionic, and net ionic equations for each of the following acid-base reactions and identify the spectator ions.
(a) strontium hydroxide $(a q)+$ perchloric acid $(a q)$

(b) barium hydroxide $(a q)+\operatorname{sulfuric} \operatorname{acid}(a q)$ $\qquad$

PLAN:
reactants are strong acids and bases and therefore completely ionized in water
products are

SOLUTION:
(a) $\mathrm{Sr}(\mathrm{OH})_{2}(a q)+2 \mathrm{HClO}_{4}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Sr}\left(\mathrm{ClO}_{4}\right)_{2}(a q)$ $\mathrm{Sr}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)+2 \mathrm{H}^{+}(a q)+2 \mathrm{ClO}_{4}^{-}(a q)$
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Sr}^{2+}(a q)+2 \mathrm{ClO}_{4}^{-}(a q)$
$2 \mathrm{OH}^{-}(a q)+2 \mathrm{H}^{+}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
(b) $\mathrm{Ba}(\mathrm{OH})_{2}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{BaSO}_{4}(s)$
$\mathrm{Ba}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)+2 \mathrm{H}^{+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q)$
$2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{BaSO}_{4}(\mathrm{~s})$
$2 \mathrm{OH}^{-}(a q)+2 \mathrm{H}^{+}(a q) \quad 2 \mathrm{H}_{2} \mathrm{O}(l)$


## Sample Problem

## Finding the Concentration of Acid from an

 Acid-Base TitrationPROBLEM: You perform an acid-base titration to standardize an HCl solution by placing 50.00 mL of HCl in a flask with a few drops of indicator solution. You put 0.1524 M NaOH into the buret, and the initial reading is 0.55 mL . At the end point, the buret reading is 33.87 mL . What is the concentration of the HCl solution?

## SOLUTION:

$\mathrm{NaOH}(a q)+\mathrm{HCl}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
At the neutral point: $1 \mathrm{~mol}(\mathrm{NaOH})=1 \mathrm{~mol}(\mathrm{HCl})$
$\mathrm{mol} \mathrm{NaOH}: c=n / V \quad n=c \vee \quad 0.03332 \mathrm{~L} \times 0.1524 \mathrm{M}=5.078 \times 10^{-3} \mathrm{~mol}$

Molar ratio is $1: 1$


As previously indicated: for these tiration "exercises" you often apply the two simple formula:

$$
c=n / V \quad n=m / M
$$



