

	mmon Ionic Compounds er at 25ºC			
Soluble Compounds	Exceptions			
Compounds containing alkali metal ions and NH ₄ +				
NO ₃ ⁻ , HCO ₃ ⁻ , ClO ₃ ⁻				
Cl-, Br-, I-	Halides of Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺			
SO42-	Sulfates of Ag ⁺ , Ca ²⁺ , S ^{r2+} , Ba ²⁺ , Hg ²⁺ , Pb ²⁺			
Insoluble Compounds	Exceptions			
CO ₃ ²⁻ , PO ₄ ³⁻ , CrO ₄ ²⁻ , S ²⁻	Compounds containing alkali metal ions and NH ₄ ⁺			
OH-	Compounds containing alkali metal ions and Ba ²⁺			

Equilibrium

$$H_{2}O H_{2}O + H_{2}O + H_{3}O + OH$$

$$H_{3} NH_{3} + NH_{3} + NH_{4} + NH_{2}$$

$$HCI HCI + H_{2}O + H_{3}O + CI$$

$$NaOH NaOH + H_{2}O + Na^{+} + OH$$

Monoprotic acids (H ₂ O neglected f	or clarity)				
HCI → H ⁺ + CI ⁻	Strong electrolyte, strong acid				
$HNO_3 \longrightarrow H^+ + NO_3^-$	Strong electrolyte, strong acid				
$CH_3COOH \implies H^+ + CH_3COO^-$	Weak electrolyte, weak acid				
Diprotic acids (H ₂ O neglected for clarity)					
$H_2SO_4 \longrightarrow H^+ + HSO_4^-$	Strong electrolyte, strong acid				
$HSO_4^- \longrightarrow H^+ + SO_4^{2-}$	Weak electrolyte, weak acid				
the second second					
Triprotic acids (H ₂ O neglected for clarity)					
$H_3PO_4 \longrightarrow H^+ + H_2PO_4^-$	Weak electrolyte, weak acid				
$H_2PO_4 \longrightarrow H^+ + HPO_4^{2-}$	Weak electrolyte, weak acid				
$HPO_4^2 \longrightarrow H^+ + PO_4^{3-}$	Weak electrolyte, weak acid				

Sample Problem Finding the Concentration of Acid from an Acid-Base Titration				
solution. Y reading is (00mL of HCl in ou put 0.1524	n a flask with M NaOH int e end point,	n a few drops o the buret, a the buret rea	of indicator
SOLUTION:				
$NaOH(aq) + HCI(aq) \longrightarrow NaCI(aq) + H_2O(l)$				
At the neutral point: 1 mol (NaOH) = 1 mol (HCI)				
mol NaOH: c = n/	V n=cV	0.03332L	X 0.1524M	= 5.078x10 ⁻³ mol
Molar ratio is 1:1				
c (HCl): c = n/V	HCI:	5.078x10	⁻³ mol	= 0.1016M
		0.0	50L	27

